Tyrosyl–DNA phosphodiesterases: rescuing the genome from the risks of relaxation
نویسندگان
چکیده
Tyrosyl-DNA Phosphodiesterases 1 (TDP1) and 2 (TDP2) are eukaryotic enzymes that clean-up after aberrant topoisomerase activity. While TDP1 hydrolyzes phosphotyrosyl peptides emanating from trapped topoisomerase I (Top I) from the 3' DNA ends, topoisomerase 2 (Top II)-induced 5'-phosphotyrosyl residues are processed by TDP2. Even though the canonical functions of TDP1 and TDP2 are complementary, they exhibit little structural or sequence similarity. Homozygous mutations in genes encoding these enzymes lead to the development of severe neurodegenerative conditions due to the accumulation of transcription-dependent topoisomerase cleavage complexes underscoring the biological significance of these enzymes in the repair of topoisomerase-DNA lesions in the nervous system. TDP1 can promiscuously process several blocked 3' ends generated by DNA damaging agents and nucleoside analogs in addition to hydrolyzing 3'-phosphotyrosyl residues. In addition, deficiency of these enzymes causes hypersensitivity to anti-tumor topoisomerase poisons. Thus, TDP1 and TDP2 are promising therapeutic targets and their inhibitors are expected to significantly synergize the effects of current anti-tumor therapies including topoisomerase poisons and other DNA damaging agents. This review covers the structural aspects, biology and regulation of these enzymes, along with ongoing developments in the process of discovering safe and effective TDP inhibitors.
منابع مشابه
Predicting CpG Islands and DNA Methlation in the Cow Genome Using DNA Microarray Meta-Analysis and Genome Wide Scanning
DNA methylation is a type of epigenetic changes that directly affects DNA. In mammals, DNA methylation is essential for fetal development and stem cell differentiation and this phenomenon essentially occurs within the CpG islands. In this study, two methods were used to study the DNA methylation profile of cow genome. In the first method, the DNA methylation profile of the differentially expres...
متن کاملAppraisal of the entire mitochondrial genome for DNA barcoding in birds
DNA barcoding based on a standardized region of 648 base pairs of mitochondrial DNAsequences from Cytochrome C Oxidase 1 (COX1) is proposed for animal species identification.Recent studies suggested that DNA barcoding has been effective for identifying 94% of birdspecies. The proposed threshold of 10 times the average intraspecific variation could be used forthe identification and delimitation ...
متن کاملSearching the genome of beluga(Husohuso) for sex markers based on targeted Bulked SegregantAnalysis (BSA)
In sturgeon aquaculture, where the main purpose is caviar production, a reliable method is needed to separate fish according to gender. Currently, due to the lack of external sexual dimorphism, the fish are sexed by an invasive surgical examination of the gonads. Development of a non-invasive procedure for sexing fish based on genetic markers is of special interest. In the present study we empl...
متن کاملO-38: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells
Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...
متن کاملI-44: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells
Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...
متن کامل